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Coronavirus disease 2019 (COVID-19), an acute respiratory disease caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has rapidly developed into a pandemic throughout the world. This disease
is a highly infectious novel coronavirus and can affect people of all ages. Previous reports observed that particu-
late matter (PM) provided a platform for intermixing with viruses (i.e., influenza). However, the role of PM in
SARS-CoV-2 transmission remains unclear. In this paper, we propose that PM plays a direct role as a “carrier”
of SARS-CoV-2. SARS-CoV-2 is reported to have a high affinity for the angiotensin-converting enzyme 2 (ACE2)
receptor. Indirectly, exposure to PM increases ACE2 expression in the lungswhich facilitates SARS-CoV-2 viral ad-
hesion. Thus, the high risk of SARS-CoV-2 in heavily polluted regions can be explained by upregulation of ACE2
caused by PM. PM could be both a direct and indirect transmission model for SARS-CoV-2 infection.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus disease 2019 (COVID-19), an acute respiratory disease
caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has rapidly developed into a pandemic throughout the
world. A cluster of patients with unknown pneumonia was reported
in late December 2019 in Wuhan, China (Zhu et al., 2020a). As of 12
July 2020, according to the World Health Organization (WHO),
esearch (T-CPR) Group, School
dical University, 250 Wuxing

g), bonjovi@tmu.edu.tw
.edu.tw (T.-C. Hsiao),
BéruBé), kfho@cuhk.edu.hk
(H.-C. Chuang).
COVID-19 had resulted in 12,552,765 confirmed cases and 561,617 re-
ported deaths worldwide. It is known that this is a coronavirus, rela-
tively similar to the severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS) coronaviruses (Lu et al.,
2020). The highly contagious COVID-19 can infect people of all ages
(Sanche et al., 2020); however, transmission models of SARS-CoV-2
via particulate matter (PM) remain unclear.

2. PM and COVID-19

The effect of meteorological factors in association with the atmo-
spheric pollution on the spread of PM and virus infection was consid-
ered in previous studies. Carducci et al. (2013) found that different
virus typeswere detected in various kinds of temperature andhumidity.
Recently, several reports in Europe, China, and the USA investigated
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associations between PM and COVID-19 (Frontera et al., 2020a; Sciomer
et al., 2020). Specifically, a study on migrant workers and refugees pos-
tulated that biomass smoke from cooking and heating could increase
the risk of COVID-19 (Thakur et al., 2020). A study involving 120 cities
in China showed that a 10 μg/m3 increase in PM of <2.5 μm in aerody-
namic diameter (PM2.5) led to more than a 2% increase in new COVID-
19 cases (Zhu et al., 2020b). However, it was argued that this rise in
COVID-19 infection was related to the high population density rather
than the short-term exposure to air pollution (Copiello and
Grillenzoni, 2020). PM10 and PM2.5 were found to be associated with
the COVID-19 incidence in Xiaogan, China (Li et al., 2020). A recent re-
port indicated that Lombardi and Emilia Romagna in northern Italy
had higher COVID-19 mortality levels compared to other regions of
Italy (Conticini et al., 2020). Notably, these regions are also among the
most heavily polluted due to the high density of factories, heavy traffic
volumes, and its specific topography of being surrounded bymountains
which prevents air cycling (Frontera et al., 2020b). Another study also
found that northern Italy, which is polluted with high levels of PM10

and PM2.5, was highly affected by COVID-19 (Martelletti and
Martelletti, 2020). Fattorini and Regoli (2020) observed a significant
correlation between chronic exposure to PM10 and PM2.5 and COVID-
19 cases in northern Italy. Zoran et al. (2020) found an association of
PM10 and PM2.5 with new confirmed COVID-19 cases. A study con-
ducted in California (USA) found a significant association of PM10 and
PM2.5 with COVID-19 mortality (Bashir et al., 2020). In a cross-
sectional study involving 98% of the American population, an increase
in 1 μg/m3 in PM2.5 exposure resulted in nearly a 10% increase in
COVID-19 mortality (Wu et al., 2020). Epidemiological evidence sug-
gests that PM could be a risk factor for COVID-19. However, the role of
PM in the COVID-19 transmission is poorly understood.

3. PM containing SARS-CoV-2 RNA: the role of direct transmission

Aerosols containing SARS-CoV-2 RNA were detected in a hospital in
Wuhan, China (Liu et al., 2020). However, the role of outdoor PM on
COVID-19 transmission remains unclear. Recently, Setti et al. (2020a,
2020b) used a polymerase chain reaction (PCR) approach to detect
SARS-CoV-2 RNA on 34 PM10 samples collected from Bergamo, Italy
during the COVID-19 pandemic outbreak, which saw its first confirmed
case on January 31st 2020. They found gene E in 15 samples and the
RdRP gene, which is highly specific to SARS-CoV-2, in four samples.
These data suggest that SARS-CoV-2 RNA can be found in ambient
PM10 in urban regions. Similar evidence for the influenza virus was pre-
viously reported. Viable avian influenza viral RNAwas found in PMup to
60 m downwind of commercial turkey farms using reverse-
transcription (RT)-PCR and culture techniques (Jonges et al., 2015). In-
fluenza viral RNA was detected in air samples collected approximately
2 km from the farms (Corzo et al., 2013). A study in the US reported
that PM10 had higher estimated concentrations of avian influenza
virus than PM2.5, but PM2.5 may be further aerially transported (Zhao
et al., 2019). That paper also reported transmission of the avian influ-
enza virus via PM2.5 within a state and between states (Zhao et al.,
2019). Viruses may be adsorbed through coagulation onto PM and re-
main airborne for hours or days (Martelletti and Martelletti, 2020),
thereby increasing inhaled concentrations of virus via PM in the lungs.
In brief, PM2.5 may provide a good platform to “shade” and “carry” the
SARS-CoV-2 during atmospheric transport. Thus, PM containing SARS-
CoV-2 could be a direct transmission model in a highly polluted area.

4. Upregulation of angiotensin-converting enzyme 2 (ACE2) by PM
exposure in the lungs: the role of indirect transmission

COVID-19 respiratory illness is caused by the SARS-CoV-2 positive-
sense single-stranded RNA virus (Yang and Wang, 2020). The lungs
are the primary target for SARS-CoV-2 infection by droplet-aerosol
transmission, especially in respiratory zones. The size of SARS-CoV-2
ranges between ~70 to 90 nm as observed by transmission electron mi-
croscopy, and it is present in a wide range of intracellular organelles
(i.e., vesicles) after infection of cells (Kim et al., 2020). ACE2 is the
main entrance for SARS-CoV-2 infection (Hoffmann et al., 2020). The
spike glycoprotein of SARS-CoV-2 has a higher affinity for ACE2 in
host cell targets (Vankadari andWilce, 2020;Wrapp et al., 2020); there-
fore, ACE2 receptors provide an adhesion site for SARS-CoV-2 to invade
cells (Brake et al., 2020). A recent report indicated that ACE2 is predom-
inantly expressed in a transient secretory cell type in the subsegmental
bronchial branches of the lungs (Lukassen et al., 2020). Our previous
study found that 3 months of exposure to PM1 increased ACE2 expres-
sion in rat lungs (Chuang et al., 2020). Exposure to cigarette smoke up-
regulated ACE2 expression, thus providing adhesion sites for SARS-CoV-
2 (Brake et al., 2020). Particle effects on ACE2 were also found in a pre-
vious study. ACE2-knockdown mice showed increase pulmonary phos-
phorylated (p)-signal transducer and activator of transcription 3
(STAT3) and p-extracellular signal-regulated kinase 1/2 (ERK1/2) levels
after fine particle-induced acute lung injury (Lin et al., 2018). Aztatzi-
Aguilar et al. (2015) exposed rats to different sizes of PM during
3 days and 8 weeks, and found that ACE2 messenger (m)RNA was
higher in the treatment group than in the control group, which sug-
gested elevated expression of ACE2 protein in the lungs. In another
study, mice treated with PM2.5 showed a significant increase in ACE2
in the lung 2 and 5 days after instillation (Lin et al., 2018). Upregulation
of ACE2 by PM10 was also observed in human alveolar A549 and human
respiratory epithelial cells (Miyashita et al., 2020). In conclusion, expo-
sure to PM increases the expression of ACE2 allowing for SARS-CoV-2
adhesion. Thus, PM-upregulated ACE2 could be an indirect transmission
model for SARS-CoV-2 infection.

5. Conclusions

SARS-CoV-2 transmission is a crucial public health concern, and
many aspects of this route urgently require further study. Currently, in-
creasing evidence has shown that droplet-aerosol transmission is an
important route for SARS-CoV-2 infection. Epidemiological reports
identified an association between PM and COVID-19; however, the un-
derlying mechanisms remain unclear. In this paper, we hypothesized
that PM is a possible transmission model for COVID-19 by direct and/
or indirect SARS-CoV-2 infection of the lungs. First, PM2.5 may provide
a good platform to “shade” and “carry” the SARS-CoV-2 during atmo-
spheric transport. Thus, PM2.5 containing SARS-CoV-2 could be a direct
transmission model in a highly polluted area. Second, PM upregulates
ACE2 expression and SARS-CoV-2 has high affinity for the ACE2 recep-
tor. This suggests that PM may increase the risk of SARS-CoV-2 via
ACE2 expression. The combination of PM and SARS-CoV-2 may aggra-
vate lung injury by increasing inflammation. Herein, providing insights
into the risk of airborne transmission of SARS-CoV-2 via PM.
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